
Understanding Potential Performance Issues Using
Resource-based Alongside Time Models

Nan Ding
Lawrence Berkeley National

Laboratory
Berkeley, CA, USA
nanding@lbl.gov

Victor W Lee
Intel Corporation
Santa Clara, USA

victor.w.lee@intel.com

Wei Xue
Weimin Zheng
Tsinghua University

Haidian District, Beijing, China
xuewei@tsinghua.edu.cn

ABSTRACT
Performance analysis has been considered as a necessary step to
bridge the widened gap between the actual and the expected per-
formance of scientific computing applications (SCAs). Performance
analysis tools are becoming one of the most critical components in
today’s HPC systems. Performance modeling, the core technology
to identify key performance characteristics and predict potential
performance bottlenecks, is becoming an indispensable tool to
understand the performance behaviors and guide performance opti-
mization of SCAs. Meanwhile, numerous challenges and opportuni-
ties are introduced by the complexity and enormous code legacy of
SCA’s, the diversity of HPC architectures, and the nonlinearity of in-
teractions between SCAs and HPC systems. To address these issues,
we propose the Resource-based Alongside T ime (RAT) modeling
method to help to understand the application run-time performance
efficiently. Firstly, we use hardware counter-assisted profiling to
identify the key kernels and non-scalable kernels in the applica-
tion. Secondly, we show how to apply the resource-based profiling
into performance models to understand the potential performance
issues and predict performance in the regimes of interest to develop-
ers and performance analysts. Thirdly, we propose an easy-to-use
performance modeling tool for scientists and performance analytics.
Our evaluations demonstrate that by only performing a few small-
scale profilings, RAT is able to keep the average model error rate
around 15% with average performance overheads of 3% in multiple
scenarios, including NAS parallel benchmarks, dynamical core of
atmosphere model of the Community Earth System Model (CESM),
and the ice component of CESM over commodity clusters.

KEYWORDS
Performance modeling, Resource-based alongside time, Hardware
counter, performance issues

ACM Reference Format:
Nan Ding, Victor W Lee, Wei Xue, and Weimin Zheng. 2018. Understanding
Potential Performance Issues Using Resource-based Alongside Time Models.
In Proceedings of ACM conference (SC’18). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SC’18, November, 2018, DALLAS, TX, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 SUMMARY
The ever-growing complexity of HPC applications, as well as the
computer architectures, cost more efforts than ever to learn applica-
tion behaviors by massive analysis of applications’ algorithms and
implementations. To efficiently make projections of applications’
scaling run-time performance, designing performance models [1–
13] has long been an art only mastered by a small number of experts.
Nevertheless, we can still see that performance models can be used
to quantify meaningful performance characteristics across appli-
cations [2, 3] and to provide performance bottlenecks associated
with their implementations [14]; to offer a convenient mechanism
for users and developers to learn the scaling performances [8, 9],
and even to guide the optimization decisions [11].

We propose a Resource-based Alongside T ime (RAT) model
(Tab. 1) that starts with an analytical model framework and pre-
dicts the computation and communication performance separately
by using hardware counter-assisted profiling. We instrument the
PMPI interface [15] to profile communication performance and
then use the well-known Hockney model [16] to predict the com-
munication performance. Such methods allow us to overcome the
disadvantages of manual high-efforts (analytical models [10–13])
and unwarrantable model accuracy (empirical models [1–8]).

To summary, our contributions are as follows: 1. A hardware
counter-assisted technique to identify function-level ker-
nels. As opposed to other typical performance modeling works,
such as modeling each loop as a kernel [5, 17], we choose function-
level kernels to model for two reasons. First, applications often have
thousands of loops and understanding the significance of each loop
can be challenging for users, even the well-known NAS Parallel
Benchmarks (NPB [18]) contain hundreds of loops. Second, func-
tions usually naturally separate communication and computation
in parallel applications to enable us to predict them separately. We
identify and model three kinds of kernel candidates by using execu-
tion cycle counter from profiling runs with different parallelisms.
• Functions whose share of the application execution cycles are
larger than a user-defined threshold.

• Other functionswhose run-time is not decreasing. Non-expensive
functions may become expensive ones when we conduct the
application run with different parallelisms or different inputs.
For example, the functions in the sequential part can turn into
hot-spots when running the application with more processes.

• The remaining functions except for the first and second set of
functions. The reason is that the aggregated kernel can reduce
the overhead of building performance models while maintaining
good accuracy. Besides, the entire run-time would be slightly
affected even if we consider those small functions individually.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


SC’18, November, 2018, DALLAS, TX, USA Nan Ding et al.

Table 1: How is the model item derived?
how is the model item derived?

T _compi
instruct ionsi ∗ CP I_cor ei

CPU f r equecy ∗ P
T _comm

˝r
i=1 T _p2p +

˝l
i=1 T _collect ive

T _memi T _L1i + T _L2i + T _LLCi + T _mmi

BF _memi
T _stalli
T _memi

CPI _corei CPI −
˝Mem

m=L1 Missm · Lm

BF _comm T _mapp−T _mcomp
T _mcomm

T _stalli fitting from RESOURCE_STALLS.LB(ST) counter
T _L1i fitting from MEM_LOAD_UOPS_RETIRED.L1_HIT_PS counter
T _L2i fitting from MEM_LOAD_UOPS_RETIRED.L2_HIT_PS counter
T _LLCi fitting from MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS counter
T _mmi fitting from MEM_UOPS_RETIRED.ALL_LD(ST)_PS counter
instructionsi fitting from INST_RETIRED.ANY_P counter
T _collect ive fitting from P and operation type
T _p2p fitting from S
T _others fitting from P

2. A Resource-based Alongside Time (RAT) model. The to-
tal run-time (T_app) equals to the accumulation of the compute
kernels’ run-times (

˝
T_compi , i refers to the identification of com-

pute kernels) and the non-overlapped communication run-time
(T_comm). Our model predicts T_app of a given parallel applica-
tion on a target scale Pt by using several profiling runs with q
processes, where q ∈ {2; ::P0}, P0 < Pt . Within the profiling runs,
we use regression-based method (f = a · (log P)b · Pc + d) to fit
each counter profiling results with number of processes (P ). The
point-to-point (p2p) communication time cost t of sending a certain
number of messagem of size s equals to t = m · (a ·s +b). According
to the well-known Hockney model [16], we modeling the p2p com-
munication time t with total communication size ts as a · tsb + c .
We consider the MPI_Bcast , MPI_Alltoall , and MPI_Allreduce in
the subset of MPI collective operations. Take MPI_Bcast as an ex-
ample, the time cost t of a broadcast a message of size s among
all processes P equals to t = a · loд(P) + b · sc + d . For a sake for
simplicity, we use an average message size among processes rather
than modeling each individual message.

The computing platform is a 4-node Intel Xeon cluster that
contains two Intel Xeon E5-2698v3 processors running at 3.0GHz
with 64GB of DDR3-1600 memory. In the case study of the Los
Alamos sea-ice model (CICE [19]), RAT model guides us to find
Limited_gradient (L) and transport_integrals (T) have simi-
lar CPIs. However, L has a higher BF_mem than Twhich indicts that
L suffers from lower memory traffic as Fig. 1 shows. In NPB [18],
Fig. 2 shows that RAT model can help to capture the performance
insights that SP has a relatively bad memory behavior than BT.
By looking into the SP code, it has some non-continuous memory
accesses. Similar to the LU comparing to other workloads. Fig. 3
shows the comparison between the RAT model and the well-known
model [20] based on Amdahl’s law in multiple scenarios. Rat model
can lower the model error rate while capturing the critical perfor-
mance characteristics.

Calotoiu et al. [8] use performance models to find performance
scalability bugs. This is probably the most similar work with ours.
The main differences are that (1) they aim to report the kernel
rankings while they do not separate the computation and commu-
nication. Thus the communication time reveals in strong scaling
runs. However, the computation code sections that do not scale
well are still hidden in the complex codeïĳŇand (2) they use com-
munications and floating point operations as metrics to evaluate
the large-scale performance issues, while we provide the possible

C
P

I
B

F
m

e
m

Number of processes

Figure 1: Distinguish similar CPIs from lower memory traf-
fic/higher instruction efficiency and higher memory traf-
fic/lower instruction efficiency in CICE [19].

Figure 2: Characterize the memory impact of the NPB [18].
The x-axis is the number of processes.

M
od

el
 E

rr
or

model based on Amdahl's law
RAT model

Figure 3: Compared to well known model [20], RAT model
is able to lower the model error rate whilst capture the key
performance characteristics.

causes of the potential scaling issues by separating the memory
effect from computations. To better understand the fine-grained
performance, Bhattacharyya et al. [5] break the whole program
into several loop kernels with the assumption that kernels can have
simpler performance behaviors. However, this can be hundreds of
kernels even for the NAS parallel benchmarks, and it is not effec-
tive to handle the complex loops and functions in real applications.
Chatzopoulos et al. use the hardware counters to extrapolating the
scalability of in-memory applications [21]. There is a consensus
that performance modeling technique can be an effective approach
for understanding the resource consumption and scalability.

ACKNOWLEDGMENTS
Authors from Lawrence Berkeley National Laboratory were sup-
ported by the U.S. Department of Energy’s Advanced Scientific
Computing Research Program under contract DEAC02-05CH11231.
Authors fromTsinghua University are partially supported by the Na-
tional Key R&D Program of China (Grant No. 2016YFA0602100 and
2017YFA0604500), National Natural Science Foundation of China
(Grant No. 91530323 and 41776010).


	Abstract
	1 Summary
	Acknowledgments
	References

